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Dynamics of quasibound state formation in the driven Gaussian potential
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The quasibound states of a particle in an inverted-Gaussian potential interacting with an intense laser field
are studied using complex coordinate scaling and Floquet theory. The dynamics of the driven system is
different depending on whether the driving field frequency is less than or greater than the ionization frequency.
As the laser field strength is increased, a new quasibound state emerges as the result of a pitchfork bifurcation
in the classical phase space. Changes in the time-averaged “dressed potential” appear related to this bifurcation
and provide additional confirmation of the role of the bifurcation on the emergence of a new quasibound state.
The Husimi plots of the quasibound state residues reveal strong support on the periodic orbits of the bifurcation

at frequencies above the ionization frequency.
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I. INTRODUCTION

When intense laser radiation interacts with atomic and
molecular systems it can produce some surprising effects.
For example, laser radiation typically causes destabilization
and ionization of electrons. However, if the radiation field
has high enough intensity, it can actually stabilize an electron
[1-8] and suppress ionization in the presence of intense laser
radiation.

The key to electron stabilization is the formation of the
quasibound states in the presence of radiation. Early work by
Bardsley and Comella [9] showed the creation of an addi-
tional quasibound state for a particle subject to an intense
laser field. Ben-Tal ef al., using a time-averaged or “dressed”
potential, predicted that new quasibound states could appear
with increasing laser intensity in an inverted Gaussian poten-
tial [10]. Several authors have suggested that the underlying
classical dynamics might provide an insight into a mecha-
nism for the stabilization [6,7]. In this regard, the phase
space distribution of the quasibound state residues have been
related with the unstable periodic orbits in classical phase
space [11]. The creation of a new quasibound state, with
increasing laser intensity, in the presence of chaotic struc-
tures has been observed using Floquet scattering theory [12].
In this work, we show the relation between these different
approaches and give evidence that one mechanism for qua-
sibound state formation is the appearance of a bifurcation in
the underlying classical phase space.

The model system studied here corresponds to a particle
located in an inverted Gaussian potential and interacting with
a monochromatic external field. The driven inverted Gauss-
ian potential has been used by a number of authors [9-13,15]
to study the interaction of radiation with the bound states of
atoms. The Hamiltonian for this system is time periodic and
can be written in the form

1 € 2
H(t) = E[p - ;sin(wt)} — V, exp[— (x/a)?], (1)

where p and x are the momentum and position, respectively,
of an electron in the presence of the inverted Gaussian po-
tential with depth V,; and width a. The external field has
strength €, w is the frequency, and ¢ is the time. All param-
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eters are expressed in terms of atomic units (a.u.). We will
study the behavior of this system for the parameter values,
Vp=0.270 35 a.u. and a=2 a.u. These parameters describe
the behavior of a one-dimensional model of the negative
chlorine ion CI~ in a laser field and are also used in [12]. For
these parameters only one electron bound state of energy
E;,=-0.1327 a.u. is allowed in the absence of the external
field. The harmonic limit of the inverted Gaussian potential
has harmonic frequency w,=0.363 a.u.

In our study of this driven system, we will focus on two
external field frequency regimes, one below and the other
above the ionization frequency w;~0.14. Marinescu and
Gavrila [17] point out that, in these two regimes, the atom
responds differently to radiation, and we also find that to be
the case. We choose two external field frequencies, w
=0.0925 and 0.236 a.u. representing low and high frequency
regimes, respectively. The high frequency case (w=0.236)
has been studied by several authors [16,17] in relation with
the suppression and oscillation of the ionization as the exter-
nal field strength increases. In Sec. II we will investigate the
classical phase space distribution for these two frequency
regimes. In Sec. III we present the complex coordinate
method and Floquet theory that we use to calculate the
quasienergy spectrum of the driven inverted Gaussian sys-
tem. In Sec. IV the classical-quantum correspondence is ex-
plored by comparing the classical and quantum phase space
distributions. In Sec. V, we examine the relation between the
time-averaged “dressed” potential and the distribution of the
bifurcated fixed points. Conclusions are drawn in Sec. VL.

II. CLASSICAL DYNAMICS OF THE DRIVEN GAUSSIAN
SYSTEM

The inverted Gaussian potential, when driven by a time
periodic field, undergoes a transition to chaos by forming a
fractal network of heteroclinic tangles in phase space in the
region of influence of the inverted Gaussian. The fractal
structure of the heteroclinic tangles in the classical system
has been studied in great detail in [13,14]. Such chaotic
structures have been found to support quasibound states in
other systems [18-21] and some evidence has been given
that unstable periodic fixed points within the chaotic struc-
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(a) ®=0.0925a.u., £€=0.0015 a.u.

(b) ®=0.236 a.u., €=0.0015 a.u.

(¢) ®=10.3633 a.u., e=0.0015 a.u.

(d) ®=0.5a.u., e=0.0015 a.u.

X (a.u.)

FIG. 1. Strobe plots of the system with external field strength
€=0.0015 a.u. and (a) @=0.0925 a.u., (b) w=0.236 a.u., (c) w
=0.3633 a.u., and (d) w=0.5 a.u. The circles along the p=0 axis
indicate the fixed points of the periodic orbits.

tures can support quasibound states [11]. We will give here
direct evidence that periodic orbits do serve to support qua-
sibound state structures.

For a system with one spatial dimension driven by a time
periodic field, we can study the structure of orbits in the
classical phase space using a Poincaré surface of section
(strobe plot). Such a plot is obtained by plotting p and x at
each period, T=27/w, of the external field [22]. It is inter-
esting to follow the behavior of the driven system as a func-
tion of frequency. Figure 1 shows the strobe plots of classical
orbits in the region of influence of the Gaussian potential
with frequencies w=0.0925, 0.236, 0.3633, and 0.5 a.u. at
field strength €=0.0015 a.u. The plots follow the evolution
in time of a set of initial orbits. The phase space coordinates
p versus x are plotted at times nzf where n=0,1,2,.... At
this low field strength, there is a large central island sur-
rounded by a thin chaotic layer near the separatrix region.
The open circles along the p=0 axis indicate the positions of
key period-one periodic orbits. These orbits return to their
starting points in phase space after each period of the driving
field. The stable and unstable fixed points for the period-one
primary resonance (which is induced by the external field)
are located near x=3.9 and -3.81 a.u., respectively, in Fig.
1(a). The fixed point for the stable central island is near the
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FIG. 2. (a) Strobe plot of the system with @=0.0925 a.u. and
field strength €=0.038 a.u. The circles along the p=0 axis indicate
the fixed points of the periodic orbits. (b) The spatial evolution of
the fixed points as a function of the field strength.

origin. As we increase the external field frequency the un-
stable periodic orbit from the primary resonance and the pe-
riodic orbit from the central island near the origin disappear
[see Fig. 1(c)]. The external field frequency w=0.3633 a.u.
almost matches the natural frequency w, of the unperturbed
Gaussian potential in the harmonic limit. In Fig. 1(d), the
period-one periodic orbits have disappeared at the driving
field frequency w=0.5 a.u. because the external field can no
longer resonate with the orbits of the unperturbed Gaussian
system.

In subsequent sections, we will focus on the behavior of
this system for two external field frequencies, w=0.0925 and
0.236 a.u. In the remainder of this section, we consider the
classical behavior of the system at these frequencies.

A. Low frequency case

Figure 2(a) shows the strobe plots with frequency w
=0.0925 a.u. and field strength €=0.038 a.u. The phase
space is divided into a central island and a chaotic region
surrounding that island. In addition to the interesting behav-
ior in the region of influence of the Gaussian, we find het-
eroclinic tangles extending far out into the classical phase
space. The size of the central island gets smaller and the
heteroclinic tangles spread as the external field strength in-
creases. The circles along the p=0 axis indicate the positions
of key period-one periodic orbits [indicated in Fig. 2(b)] in
phase space. In Fig. 2, we show the fixed points which cor-
respond to the central island, unstable and stable fixed point
pair, and the bifurcated fixed points. Figure 2(b) shows the
positions of the fixed points as a function of field strength €
for frequency w=0.0925 a.u. At low field strength, we find
several fixed points at x<<0. The primary period-one reso-
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FIG. 3. Strobe plots of the system with w=0.236 a.u. at the
field strengths (a) €=0.0278 a.u., (b) €=0.0978 a.u., (c) €
=0.2278 a.u., and (d) €=0.3678 a.u. The circles along the p=0
axis indicate the fixed points of the periodic orbits.

nance has a stable fixed point at x=3.9 a.u. and an unstable
fixed point at x=-3.81 a.u. for €=0.0015 a.u. There are
several other stable or unstable fixed points not shown in this
figure. As we increase the field strength, all the fixed points
for x=0 a.u. (including the fixed point of the central island)
disappear at about €=0.13 a.u. The stable fixed point of the
period-one primary resonance near x=3.9 a.u. moves to
larger values of x and undergoes a pitchfork bifurcation into
three period-one periodic orbits near €=0.0041 a.u. Note
that in Fig. 2(a), the fixed points are separated by regions in
the tangle structure that originate in the asymptotic region of
the phase space.

For this low frequency, the bifurcation occurs at a field
strength lower than the field strength where the other fixed
points disappear. We will find qualitatively different behavior
for the high frequency case.

B. High frequency case

Figure 3 shows strobe plots for the system driven with
frequency ®=0.236 a.u. and field strengths €=0.0278,
0.0978, 0.2278, and 0.3678 a.u. At the field strength €
=0.0278 a.u. in Fig. 4(a), the period-one primary resonance
has a stable fixed point at x=2.43 a.u. and an unstable fixed
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FIG. 4. Strobe plots of the system with ®=0.236 a.u. and (a)
€=0.0795 a.u., (b) €=0.0796 a.u., and (c) €=0.0797 a.u. The
circles along the p=0 axis indicate the fixed points of the periodic
orbits.

point at x=-2.0 a.u. The fixed point of the central island is
at x=—0.32 a.u. The unstable fixed point of the primary
resonance and the fixed point of the central island have dis-
appeared for the field intensity near €=0.0978 in Fig. 3(b),
and the stable fixed point of the primary resonance has un-
dergone a bifurcation. Note that the fixed points of the bifur-
cation remain connected by chaotic tangles. Also note that
the heteroclinic tangles and the bifurcated fixed points move
apart in Figs. 3(c) and 3(d) with increasing field intensity.

In Fig. 4 we focus on the pitchfork bifurcation which
occurs at about €=0.0796. The period-one stable fixed points
are created and move apart. As the field strength increases
further, these two newly created period-one stable fixed
points themselves become unstable and undergo a sequence
of period-doubling bifurcations. These additional bifurca-
tions occur on a very small scale in the phase space.

Figure 5 shows the positions of the bifurcated period-one
fixed points as a function of field strength e for the frequency
0=0.236 a.u. As the external field intensity increases the
unstable fixed point of the period-one primary resonance and
the fixed point of the central island approach and disappear
near the intensity €=0.06 a.u. The stable fixed point of the
period-one primary resonance moves to larger values of x
and bifurcates into three fixed points near €=0.0796 a.u. As
we will see later, the spatial distribution of the bifurcated
fixed points is closely related with the quantum probability
distribution of the stabilized quasibound states of the system.
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FIG. 5. The spatial evolution of the fixed points as a function of
the field strength for the system with w=0.236 a.u.

III. QUANTUM DYNAMICS OF THE DRIVEN GAUSSIAN
SYSTEM

When the external field is applied to the inverted Gauss-
ian system, bound states become quasibound states with fi-
nite lifetime. We use smooth exterior scaling (SES) [23,24]
in order to determine the lifetime of quasibound states. This
approach rotates the coordinate x but only in the region out-
side the influence of the potential. It allows us to obtain an
undistorted view of the phase space distribution of the resi-
dues associated with the quasibound states.

The basic idea of SES is to scale the x coordinate by the
factor '?, but only in the region |x| = x, where the potential is
zero. A discontinuity in the scaling at x= * x, is avoided by
using a smoothed scaling relation x — X where

L L ln(cosh[x(x—xs)])]_ o)

T=x+ i0_1
x—X=x+(e )[x 2N \cosh[A(x +x,)]

In this paper, we use A=5 and x,=25 a.u. unless otherwise
stated. The scaled coordinate ¥—x for |x| <x, and ¥— xe'?
for x— oo,

Under this transformation, the Hamiltonian for the scaled
undriven inverted Gaussian system takes the form

2

Aolx) = "; ~ Vo expl- (W/a)?] + V(). (3)

where

Vix

o ;
Losh fe M, )5

4P T8 P 2\ R

and f(x)=% and f=§f.
We use the particle-in-a-box states for the basis states,

(xlny = \/jsin(nLﬂ - ?) 5)

where —L/2=x=L/2. The eigenstates of the scaled Hamil-

tonian ITIO can be expanded in terms of these basis states so
that
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FIG. 6. Husimi distribution of the bound state of the unper-
turbed inverted Gaussian system using =2 a.u.

N
|libl> = 2 Cm-|l’l>. (6)
n=1

Note that because the scaled Hamiltonian is not Hermitian,
the states |)==N_ c;,|n) and (| =="_ ¢, (n| satisfy a bilin-
ear normalization condition =", ¢ m—l In this study we have
achieved a numerical convergence with the number of basis
states N=200 and the size of the system L=200 a.u.

We use Husimi plots to visualize the distribution of prob-
ability, in phase space, of quasibound state residues in the
region of influence of the Gaussian potential. The Husimi
function G(x,p) for any state (x) can be written [25]

2

1 1 14 * ’ 2 2 .7
G(x,p) = _2 _2 3 J e — X207 —ipx p(x")dx"|
(7)

where o is a coarse-graining parameter that determines the
width of the Gaussian in the x and p directions. A Husimi
plot of the one bound state of our inverted Gaussian system
is shown in Fig. 6 for 0=2 a.u. The dispersions in spatial
and_momentum distribution_of the wave packet are o,
=Vo/2=1.41 a.u. and 0,=V1/20=0.35 a.u., respectively.
We study the qua51bound states in the quantum system
using Floquet theory together with SES. Because the scaled

driven Hamiltonian H(z) is time-periodic, the solutions,
|y(t)), to the Schrodinger equation

‘9"””» — A0 ®)

can be expanded in Floquet eigenstates [which we denote as

|po(1))] so that
(1)) = 2 A e, (1)). )

The Floquet eigenstates satisfy the eigenvalue equation

{Fl(r) - z%] |pal1)) = Ql (1)), (10)

where (), is the ath Floquet eigenphase. The Floquet eigen-
states |@,(t)) are time-periodic | (t))=|p,(t+T)), where T
is the period of the Hamiltonian, and they form a complete
orthonormal set. At the time 7=7, the solution to the
Schrédinger equation can be written
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[U(T)) = 2 77| ,(0)) h0(0)|1(0)). (11)

From Eq. (11), the Floquet evolution operator at time t=T is
defined as

U(T) = X e[ ,(0) ), (0)]. (12)

The eigenvalues and eigenstates of the Floquet evolution op-
erator U(T) can be computed numerically by evaluating U(T)
), of FIO, so that

Ui (1) = 2 ] o0)X bal0)] 1)

using the eigenstates,

(13)

If we diagonalize the Floquet matrix in Eq. (13), we obtain
the eigenvalues e’ and coefficients ¢; in the eigenstate
expansion

|6a(1)) = |¢a(0) = 2 ¢l ). (14)

The Floquet matrix in Eq. (13) is computed by writing the
Schrodinger equation in terms of a basis set composed of the
eigenstates |¢;). We then integrate the Schrodinger equation
for one period of time using one of the eigenstates |¢;) as an
initial condition. This gives one column of the Floquet time
evolution matrix. This process is repeated for each eigenstate
until the full Floquet matrix is constructed.

The time-dependent scaled Schrodinger equation for the
driven inverted Gaussian system is

A 0) = AW 0) ~ 5 sin(on ()

+ %Sinz(a}tﬂ‘l’(l‘», (15)

where p is the complex scaled momentum operator. We can
calculate the matrix element of p in terms of the unperturbed

eigenstates of I;VO, SO

N N

WGlplyy = 2 2 cpicnfmlpln),

m=1 n=1

(16)

where we use the fact that |;) is expanded in terms of |n).

As described in [23], the eigenvalues e~*®” will consist
of continuum states and quasibound states, all of which lie
inside or on the unit circle. The continuum states change
position as the scaling angle € is changed. The quasibound
states are independent of 6 and do not change position as 6 is
changed. By changing @ and observing the positions of the
various eigenvalues ¢ “’’, we can determine which eigen-
values correspond to quasibound states.

IV. QUASIBOUND STATES

We now examine the quasibound state structure of the
driven inverted Gaussian system. We first consider the be-
havior of quasibound states for the low frequency w
=0.0925 a.u. for varying field strengths. Then we consider
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FIG. 7. Quasibound states for the field frequency
=0.0925 a.u. with varying external field strengths from €=0.034 to
0.050 a.u.

the quasibound state behavior for the high frequency, w
=0.236, and compare the behavior of quasibound states in
these two dynamical regimes. We will find that they behave
very differently.

A. Low frequency case

Figure 7 shows the eigenvalues ¢ Y’ associated with

quasibound states (we do not show continuum states in this
plot) for the field frequency w=0.0925 a.u. with external
field strengths varying from €=0.034 to 0.05 a.u. These ei-
genvalues were obtained by using SES with #=0.3 and x;
=25 a.u. The quasibound state (called A) that emerges from
the bound state of the inverted Gaussian is located at point A
at €=0.034 a.u. and moves in the direction of the arrow as
the external field strength increases to €=0.50 a.u. As it
moves, it becomes increasingly unstable. A second quasi-
bound state (called B) originates from the continuum with
very short lifetime and is located at point B for €=0.034. As
€ increases from €=0.034 to 0.50 a.u. it follows the arrow
and becomes increasingly more stable.

The lifetime of the quasibound states can be evaluated by
writing the eigenphase ), in the form Q,=¢,—il",/2, where
7,=1/T, is the lifetime of the quasibound state. The lifetime
for each state is given in multiples of the driving field period
T=2m/w. At €=0.034, the quasibound state A has a lifetime
7=2.88 T and the quasibound state B has a lifetime 7
=0.29 T. The two quasibound states undergo an avoided
crossing at €=0.043 a.u. After the avoided crossing between
the two quasibound states occurs, the quasibound state B
approaches the unit circle and becomes long-lived with life-
time, 7=5.5 T, while the quasibound state A moves away
from the unit circle and becomes short-lived with lifetime,
7=0.23 T.

The phase space distributions of quasibound state residues
associated with these eigenvalues exchange their character as
they undergo the avoided crossing. Figure 8 shows the Hu-
simi distributions for the residues of quasibound states A and
B for field strengths €=0.038, 0.043, 0.045, and 0.050 a.u.
The change in quasibound state A as the field strength in-
creases is shown in Figs. 8(al)-8(a4). The Husimi distribu-
tion of this quasibound state at €=0.038 a.u. has a structure
similar to the bound state of the unperturbed system shown
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FIG. 8. Husimi distributions of the quasibound states at the fre-
quency w=0.0925 a.u. with field strengths €=0.038, 0.043, 0.045,
and 0.050 a.u. from top to bottom. (al)—(a4) show a variation of the
quasibound state originated from the bound-state as the field
strength increases. (b1)—(b4) show a variation of the quasibound
state originated from the continuum as the field strength increases.

in Fig. 6. As the field strength increases, the Husimi distri-
bution develops an elongated structure toward the con-
tinuum. The change in quasibound state B is shown in Figs.
8(b1)-8(b4). The Husimi distribution of this quasibound
state at €=0.038 a.u. is strongly coupled to the continuum.
The Husimi distributions for these two quasibound states
near the avoided crossing at €=0.043 a.u. contain a super-
position of both the bound statelike structure and strong con-
tinuum component. After the avoided crossing occurs, the
Husimi distribution of quasibound state A keeps spreading
out into the continuum and the Husimi distribution of quasi-
bound state B develops contracted structure near the origin as
the field strength increases. The circles along the p=0 axis
show the fixed points of key periodic orbits in classical phase
space. The probability distribution of the quasibound states
with long lifetimes are concentrated on the fixed points of
the bifurcation in the underlying classical phase space.

Quasibound state B emerges from the continuum at about
€=0.038 which is a field strength well above the classical
bifurcation. At e=0.038, the classical phase space contains a
large chaotic region formed from heteroclinic tangles in ad-
dition to the fixed points from the bifurcation. The emerging
quasibound state is exposed to a large underlying chaotic sea
classically and has strong coupling to the continuum giving it
a fairly short lifetime. A similar phenomenon has been re-
ported in an electron waveguide system [18]. In the next
section, we find that the quasibound states, for the high fre-
quency case, have very different behavior.

B. High frequency case

Figure 9 shows the continuum (closed circles) and quasi-
bound state (gray circles) eigenvalues ¢’ for external field
strengths €=0.0278, 0.0978, 0.2278, and 0.3678 a.u. These
were obtained by using SES with 6=0.3 and x,=20 a.u. At
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FIG. 9. Eigenvalues for the field frequency w=0.236 a.u. with
external field strengths at (a) €=0.0278 a.u., (b) €=0.0978 a.u., (c)
€=0.2278 a.u., and (d) €=0.3678 a.u. Continuum (closed circles)
and quasibound state poles (gray circles) are shown.

low field intensity, €=0.0278 a.u., in Fig. 9(a) there is one
quasibound state A which is the destabilized ground state of
the inverted Gaussian potential.

As field strength increases, a new quasibound state
emerges from the continuum states near the unit circle at
about €= 0.0978 [see Fig. 9(b)]. The state shown in Fig. 9(b)
is a quasibound state because it has the property that its
position in the unit circle does not change as the scaling
angle 6 is changed, whereas the positions of continuum
states do change. Note that this criterion for identifying qua-
sibound states becomes less accurate for states near the unit
circle because the dependence of the continuum states on the
scaling angle 6 becomes weaker close to the unit circle. With
the numerical accuracy available to us, we can determine the
value of € at which this state does emerge to an accuracy of
plus or minus 0.01 a.u.

Once the new quasibound state B has emerged near the
unit circle, the two quasibound states move around inside the
unit circle as we increase the external field strength. How-
ever, unlike the low frequency case, these two quasibound
states do not undergo an avoided crossing. Both of them
approach the unit circle and attain long lifetimes, 7=10.22
and 10.15 T at €=0.3678 a.u. in Fig. 9(d). Thus the lifetimes
of both quasibound states increases with increasing external
field strength, indicating that stabilization of the electron has
occurred. This field strength seems to agree with the field
strength where the first minimum of the ionization occurs in
[16] and the Born approximation of the high-frequency Flo-
quet theory of [17].

The Husimi distributions of the quasibound state residues
at frequencies corresponding to those in Fig. 9 are shown in
Fig. 10. The Husimi distribution for quasibound state A at
€=0.0278 a.u. has a structure similar to the bound state of
the inverted Gaussian system. The evolution in the phase
space distribution of quasibound state A is shown in Figs.
10(al)-10(a4). Figures 10(b1)-10(b3) show the probability
distribution of quasibound state B with increasing €. As field
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FIG. 10. Husimi distributions of the quasibound states at the
frequency w=0.236 a.u. with field strengths €=0.0278, 0.0978,
0.2278, and 0.3678 a.u. from top to bottom. (al)—(a4) show a varia-
tion of the quasibound state originated from the bound-state as the
field strength increases. (b1)—(b4) show a variation of the quasi-
bound state originated from the continuum as the field strength
increases.

strength increases, both quasibound states develop contracted
structure on the fixed points of the bifurcation.

It is interesting to compare the behavior of this system
with that of a particle in Morse potential (not shown here)
[10,19], with the same eigenvalue distribution, and driven by
a time-periodic external field. For the Morse system, the
stable fixed point of the period-one primary resonance does
not undergo a bifurcation and, for all values of ¢, there exists
only one quasibound state corresponding to the bound state
for the unperturbed system. In the next section, we give fur-
ther evidence that the appearance of quasibound state B is
associated with the bifurcation.

V. DRESSED INVERTED GAUSSIAN POTENTIAL

The dressed inverted Gaussian potential is obtained by
first transforming to the Kramers-Henneberger (KH) frame
of reference [12] (a coordinate frame that moves with the
electron). In the KH frame, the inverted Gaussian potential
oscillates back and forth with the frequency of the driving

field. A dressed potential V(x) is then obtained by averaging
oscillating inverted Gaussian potential over one period of the
oscillation such that

1
V(x)=- Vof exp{— {(x+ %cos(Zm’))/ar}dt’.
0 w

(17)

At low external field strength e, the dressed potential is simi-
lar to the inverted Gaussian with only one minimum. How-
ever, as the external field strength increases, the dressed po-
tential changes shape and takes the form of a double well
potential. This was used in Ref. [10] as the reason that a new
quasibound state appears in the driven inverse Gaussian po-

PHYSICAL REVIEW E 77, 046208 (2008)

(a) ®=0.0925 a.u.

V(x)

(b) ®=0.236 a.u.

V(x)

(c)w=0.7a.u.

210 -5 0 5 10
X (a.u.)

FIG. 11. Average inverted Gaussian potential superimposed
with the positions of the bifurcated fixed points for (a) the low
frequency case with @=0.0925 a.u. and (b) the high frequency case
with @=0.0236 a.u., and (¢) w=0.7 a.u. External field strengths
(e) are indicated inside. The positions of the fixed points are shifted
in accordance with the position of the central unstable fixed point to
be at the origin.

tential. Such a change in shape does not occur in the driven
Morse system and no new quasibound states appear in the
Morse system. It is worth noting that the dressed potential
approach for a system driven by a periodic perturbation has
been used to show the appearance of a new stable state for
the inverted pendulum [26].

Figure 11(a) shows the dressed potential for the inverted
Gaussian system for external field frequency o
=0.0925 a.u. and field strengths €=0.0041, 0.0025, 0.038,
and 0.050 a.u. As the external field strength increases, the
depth of the dressed potential decreases, as was pointed out
in [10]. Black dots on the potential give the position of fixed
points associated with the bifurcation, with the central fixed
point always placed at the central extremum of the dressed
potential. Note that the positions of the stable fixed points lie
at or near the minima of the dressed potential. In classical
phase space, the bifurcation starts near the field strength €
=0.0041 a.u. The double well structure in the dressed poten-
tial begins to form near €=0.025 a.u. The short-lived quasi-
bound state emerges near e=0.038 a.u. Thus at low frequen-
cies the dressed potential does not accurately track the
underlying dynamics, as is well-known.

Figure 11(b) shows the dressed potential for frequency
0=0.236 a.u. and field strengths €=0.0796, 0.15, 0.2278,
and 0.3678 a.u. Again, the depth of the dressed potential
decreases as the external field strength increases. For this
high frequency case, the two stable fixed points of the bifur-
cation lie closer to the minima of the double well than was
the case at low frequency. The bifurcation occurs at €
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FIG. 12. The minimum external field strength where the bifur-
cation in classical phase space occurs and the quasibound state be-
gins to form, as a function of the frequency. The emergence of the
classical bifurcation and the formation of the quasibound state are
marked by “+” and “X,” respectively.

=0.0796 and the new quasibound state emerges at about €
=0.0978.

As we increase the external field frequency, the positions
of the stable fixed points of the bifurcation and the positions
of the minima of the dressed inverted Gaussian potential
begin to coincide almost exactly. In Fig. 11(c), we show the
dressed potential and the fixed points of the bifurcation for
external field frequency w=0.7 a.u.

We have done this same analysis for the deeper inverted
Gaussian potential used in [10]. In that case, V,=0.63, a
=2.65 a.u., external field frequency is w=0.0925 a.u., and a
variety of field strengths. We again find this same good cor-
respondence between the positions of the fixed points of the
bifurcation and the minima of the dressed potential. All these
results indicate that the change in shape of the dressed po-
tential from a single well to a double well potential, as ex-
ternal field strength increases, is a result of the bifurcation in
the underlying dynamics. The higher the frequency of the
driving field and the deeper the potential, the better the cor-
respondence.

In Fig. 12 we show the field strength at which the bifur-
cation occurs as a function of frequency (marked by “+”). In
the same figure we show the field strength at which the qua-
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sibound state emerges (marked by “X”). The classical bifur-
cation, as a function of field intensity, always occurs before
the quasibound state forms. The agreement is very good. We
also find that the underlying classical phase space evolves
rapidly from regular to chaotic structure as the external field
strength is increased at low frequency. The same develop-
ment of the phase space structure can be observed over a
much wider range of external field strength at high fre-
quency.

VI. CONCLUSIONS

The Floquet spectrum of the driven inverted Gaussian
system has been calculated using complex coordinate rota-
tion. The emergence and movement of quasibound states in
the unit circle have been studied in order to understand the
mechanism for stabilization of the system with an increasing
external field intensity. The quantum-classical correspon-
dence is investigated by comparing Husimi distributions of
quasibound state residues to classical phase space structures.
The number of quasibound states increases from one to two
as field intensity increases. We find distinctly different dy-
namics depending on whether the driving frequency is below
or above the ionization frequency.

For the low frequency case, the complex eigenvalues
¢l associated with the quasibound states undergo an
avoided crossing as we vary the field strength. For this case,
the new quasibound state emerges with very short lifetime
and its residue, as it emerges, has partial support on the clas-
sical chaotic tangles and is strongly connected to the con-
tinuum.

For the high frequency case, the residue of the new
emerging quasibound state has support on the periodic orbits
of the bifurcation and these periodic orbits are fully im-
mersed in the chaotic tangles associated with the reaction
region. As we increase the laser intensity for the high fre-
quency case, the residues of the two quasibound states be-
come contracted into regions near the fixed points of the
bifurcation, thereby stabilizing the electron—chlorine ion sys-
tem.
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